

The Met Office Hadley Centre Sea Ice and Sea-surface Temperature Dataset, HadISST.2.2.0.0

J.J. Kennedy, N.A. Rayner, C. Atkinson, H.A. Titchner

MARCDAT IV, Southampton, 20 July 2016

© Crown copyright Met Office

Consistent data sets across a range of applications

180

- HadIOD (Atkinson et al. 2014)
 - Integrated Ocean Database
 - Designed for assimilation into reanalysis
- HadSST.3.2.0.0
 - Lower resolution, missing data
 - Incorporates in situ data only
 - Fully bias adjusted, uncertainty estimates
 - Designed for monitoring long-term change
 - Incorporated in HadCRUT4, used in Detection and Attribution
- HadISST.2.2.0.0
 - High-resolution, globally complete analysis
 - Incorporates in situ and satellite data
 - Designed for forcing Reanalysis, Atmospheric-only runs
 - Turns out to be useful for a wide range of applications

HadISST.2.2.0.0

0

90W

90E

180

HadISST.2.2.0.0

5-day 1°x1° lat-lon,1961-201010 Ensemble membersInterpolated to 0.25° daily resolution

- 1. Input datasets
- 2. Bias adjustments of data sets
- 3. Blending of data sets
- 4. 2-step reconstruction technique
- 5. Ensemble production
- 6. Results

Build from the strengths of the input data sets

- In Situ
- HadSST3 from 1850-present
 - Poor coverage, low accuracy, long record
- Satellite
- ARC ATSR Reprocessing for Climate, 1996-2010
 - Lower coverage, short record, high accuracy, stable
- SST CCI AVHRR, 1991-2010
 - Excellent coverage, long record, lower accuracy
- Bias adjust then blend

ARC – ATSR Reprocessing for Climate

- Based on Along-Track Scanning Radiometer series of instruments
- Almost independent of in situ measurements
- Shown to have biases of <0.1K
- And drifts of <0.1K decade 1995-2010
- Very small random errors also.
- Agrees with in situ record within (much larger) uncertainties of in situ record.

In situ data -

In situ data

- Improvements to in situ ensemble
- Baseline relative to drifters
- Improved ship bias estimates using drifter-ship comparisons

Ship-by-ship adjustments

Met Office

- Based on in situ data only
- Uses low-res interpolation from HadSST3
- Can be applied whenever we have ship IDs/tracks

AVHRR from SST CCI

- SST CCI has improved L2 AVHRR data
 - Improved homogeneity
 - Improved uncertainty estimation with a breakdown into random,
 locally systematic (100km, 1 day) and globally systematic
- Still has residual biases with structure between local and global
- ~1000km 5-30 day
- Adjust AVHRR relative to in situ and ATSR data
 - Smoothed Zonal-mean adjustment for each 5-day period
 - EOF based analysis using VBPCA with 25 EOFs

AVHRR adjustments

AVHRR data

Full coverage data sets

IN SITU -HadSST

AVHRR RAW – SST CCI

AVHRR ADJUSTED

ATSR - ARC

ARC IN SITU AVHRR BLEND

Colocated with in situ data

Colocated with ATSR

Marginal Ice Zone SST and sea ice concentration

- Spatially and monthly varying relationships between ARC SST and sea ice concentration
- Used to specify the SST

21° longitude region centred on 0.5°E

Blending Data Sources

Blending satellites - daily

Blending satellite and in situ - pentad

2-Step Reconstruction Technique

Large scale – Small scale

1. Variational Bayesian Principal Component Analysis VBPCA

- EOF-based
- Iterative
- Uses all available data
- Doesn't mind gappy data
- Provides consistent reconstruction, EOFs and uncertainties
- Fast
- Large-scale reconstruction

EOFs taken from estimated covariance matrix

Number of EOFs used is an input to the algorithm

Use 45 EOFs

EOF

Principal Component

Red – RAW PC

Black - Smoothed

Sampling from large scale reconstruction

- This is very cheap and efficient
- We have a set of mean weights for each EOF
- And a covariance matrix for the uncertainty in those weights
- Sampling from a 50x50 matrix is easy
- In practice, the reconstruction uncertainty is too small.
 - Correlated observational uncertainty
 - Uncertainty in the EOF patterns not represented
 - Residual noise term uncorrelated also

Local Optimal Interpolation

- Analyse residual difference
- Use local OI
- Angular length scales and angle vary with location
- Covariances based on Karspeck et al. 2012

Karspeck, A. R., Kaplan, A. and Sain, S. R. (2012), Bayesian modelling and ensemble reconstruction of mid-scale spatial variability in North Atlantic sea-surface temperatures for 1850–2008. Q.J.R. Meteorol. Soc., 138: 234–248. doi: 10.1002/qj.900

Non-stationary local

covariances

Drawing samples from Local

Multi step reconstruction, January 1-5 2004

Multi step reconstruction, January 1-5 2004

No field code At 00:00Z on 22/12/1969 90N 45N 45S 90S 180 90W 90E 0 180 -1.6 -5 -0.8 8.0 1.6 0 5

No field code At 00:00Z on 22/12/1969

90N

45N

45S

908

No field code At 00:00Z on 22/12/1969 90N 45N 45S 90S 180 90W 90E 0 180 -1.6 -5 -0.8 8.0 1.6 0 5

No field code At 00:00Z on 22/12/1969 90N 45N 45S 90S 180 90W 90E 0 180 -1.6 -5 -0.8 8.0 1.6 0 5

No field code At 00:00Z on 22/12/1969 90N 45N 45S 90S 180 90W 90E 0 180 -1.6 -5 -0.8 8.0 1.6 0 5

No field code At 00:00Z on 22/12/1969 90N 45N 45S 908 90W 90E 180 0 180 -1.6 -5 -0.8 8.0 1.6 0 5

No field code At 00:00Z on 22/12/1969 90N 45N 45S 90S 180 90W 90E 0 180 -1.6 -5 -0.8 8.0 1.6 0 5

No field code At 00:00Z on 22/12/1969 90N 45N 45S 908 90W 90E 180 0 180 -1.6 -5 -0.8 8.0 1.6 0 5

No field code At 00:00Z on 22/12/1969 90N 45N 45S 90S 180 90W 90E 0 180 -1.6 -5 -0.8 8.0 1.6 0 5

Summary and plans

HadISST.2.2.0.0

5-day 1°x1° lat-lon, 1961-2010

10 Ensemble members

Bias adjustments for inputs

2-Step Reconstruction

Just finished extension to 2016 using METOP

Monthly 1850-2016 version soon

HadISST.2.1.0.0

Monthly 1°x1° lat-lon, 1850-2010

10 Ensemble members

Questions! Answers?