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Uncertainties in estimating autotrophic C stock
Potential of bio-optical algorithms and data assimilation
(DA) using long-term remote sensing (RS) data
Ongoing works on bio-optical algorithm

Ongoing works on DA for C biomass stocks.

Sources of estimation uncertainties

Future challenges
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Autotrophic carbon: linking ocean and global climate
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Fixes ~ 50 GtC
year-1

~16 GtC year
exported to ocean
interior

Global carbon
cycle

Oceanic biological
pump

Impact higher-
trophic production



@ University of
Reading

Autotrophic carbon: global estimates and uncertainties

weamesss | Phytoplankton carbon stock
| (GtC):

Falkowski et al. (1998) - 1.0
Le Quére et al. (2005) -> 0.78
Behrenfeld et al. (2005) >0.32
Stramski et al. (2008) - 0.2
CMIP5 models mean > 0.22
Kostadinov et al. (2016) - 0.24
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Fig source: Kostadinov et al. 2016
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The key: connecting RS Chl to in situ phytoplankton C
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Chl — standard variable from RS, index of biomass

C — base currency for ecosystem models, biomass
Conversion of C to Chl interfaces the two

But C:Chl ratio not constant

Source of uncertainty in phytoplankton-C estimate
Consistent parameterization of C:Chl required

C:Chl relates to maximum phytoplankton growth rate
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Time-varying phytoplankton growth rate
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16-Year long Chl series from ocean colour: e.qg., OC-CCI
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Data source:
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Phytoplankton C: integrating /in situ and RS data

Approaches:

- Develop bio-optical
algorithm using multi-
spectral signals from ocean
colour

« Incorporate ocean colour data
into ‘ecosystem models’ e.q.,
through data assimilation

shovonlal.roy@reading.ac.uk
25/01/2017 / J



Y] University of
Reading
Bio-optical algorithm: optics to phytoplankton size

Cell size
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Absorption spectra of
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In situ PFT data and bio-optically-derived cell size
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)

Roy et al. 2011, Royal Society Interface
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Varying cell
size of
taxonomic
groups
captured by
bio-optical
algorithm
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Applying bio-optical algorithm to ocean colour

Average size of phytoplankton cells (in micro-m)

Longitude

Roy et al. 2013, Remote Sensing of
Environment
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Applying bio-optical algorithm to ocean colour

Exponent of phytoplankton size spectrum

Latitude

Longitude

Roy et al. 2013, Remote Sensing of
Environment
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Bio-optical algorithm to compute autotrophic C

Year: 1997-2013, Annual phytoplankton carbon log ] 0[mgC m'3]

Latitude

Roy et al. 2016 (in review) Remote
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Bio-optically-derived autotrophic C in 3 size classes

Climatology 1997-2013
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Phytoplankton C: integrating /in situ and RS data
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Approaches:

« Develop bio-optical algorithms
using multi-spectral signals
from ocean colour

« Incorporate ocean colour
data into ‘ecosystem
models’ through data
assimilation
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PSC and total phytoplankton C for match-up points
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Way forward to improve phytoplankton C estimation

 Inter-comparison of phytoplankton C estimates from
various methods against /in situ data:
- POC-based,
- PSD-based,
- absorption-based
- and DA-based.
(Ongoing through ESA-POCO)
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Future challenges-1: Uncertainties in RS inputs

- Variety of RS products, multiple satellites sensors

- Reliability of the merged products

- Uncertainty budgets often unavailable

- Some uncertainties OC-CCI processing quantified, not
used widely

- Data on coastal ocean still less reliable

- Bio-optical algorithms target open oceans
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Future challenges-2: Uncertainties in model selection

- Not all bio-optical models Uncertainty % in Micro-PSC
estimate the effects of oL T -
uncertainties in input variables , ol by

- BGC models formulations 522
differ from each other |

- Inputs from physiological “

models (e.g., Geider models)

often not included
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Future challenges-3: Issues with in situ data

In situ pico-C values were not directly measured, Pico-

C assumed
Unavailabi

making ap

C-per cell values
ity of in situ phytoplankton C in other PSCs,

propriate validation difficult

Unavailabi

available)

ity of in situ phytoplankton total C (POC is

In situ bio-optical data (e.g. absorption phytoplankton)

limited
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Take-home messages
Uncertainties in phytoplankton C estimates are higher
that those for POC or PP
Bio-optical algorithm and DA to OBGC can provide
independent estimates of PSC-C from ocean colour
Improving the quality and consistency of ocean colour
data required to reduce uncertainties
Validation data for phytoplankton C still insufficient
More /n situ data on phytoplankton C, PSC, and bio-

optical variables are required (bio-argo?)
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