The SAMOS Initiative –
A Decade of Successful Data Stewardship

Shawn R. Smith¹, Jeremy J. Rolph¹, Kristen Briggs¹,
Jocelyn Elya¹, and Mark A. Bourassa¹,²

¹Center for Ocean-Atmospheric Prediction Studies, Florida State University, USA
²Earth, Ocean, and Atmospheric Science Department, Florida State University, USA

smith@coaps.fsu.edu
SAMOS Overview

- Since 2005, have collected, evaluated, distributed and archived underway meteorology and surface ocean data from research vessels
 - Position, course, speed, heading
 - Air temperature, humidity, winds, pressure, radiation
 - Sea temp., salinity, conductivity
- Active contributors in 2016:
 - NOAA (16), USCG (1), IMOS (2), NSF Antarctic (2), WHOI (2), BIOS (1), SIO (2), UW (1), U. Hawaii (1), SOI (1), U. Alaska (1), LUMCON (1)
 - *Neil Armstrong* and *Investigator* new in 2016

Number of ships contributing and records processed by SAMOS

<table>
<thead>
<tr>
<th>Year</th>
<th>Ships</th>
<th>1-min Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>2</td>
<td>445846</td>
</tr>
<tr>
<td>2006</td>
<td>3</td>
<td>761753</td>
</tr>
<tr>
<td>2007</td>
<td>13</td>
<td>2407649</td>
</tr>
<tr>
<td>2008</td>
<td>21</td>
<td>4989685</td>
</tr>
<tr>
<td>2009</td>
<td>27</td>
<td>4894855</td>
</tr>
<tr>
<td>2010</td>
<td>28</td>
<td>6072321</td>
</tr>
<tr>
<td>2011</td>
<td>28</td>
<td>6190191</td>
</tr>
<tr>
<td>2012</td>
<td>35</td>
<td>6872249</td>
</tr>
<tr>
<td>2013</td>
<td>35</td>
<td>6996322</td>
</tr>
<tr>
<td>2014</td>
<td>35</td>
<td>6877784</td>
</tr>
<tr>
<td>2015</td>
<td>33</td>
<td>7775116</td>
</tr>
<tr>
<td>2016</td>
<td>31</td>
<td>3663909*</td>
</tr>
</tbody>
</table>

http://samos.coaps.fsu.edu

Shipboard Automated Meteorological and Oceanographic System
SAMOS Data Processing

- One-minute samples are bundled in daily email messages.
- Automated processing merges data with extensive vessel metadata (based on VOSCLim).
- Data are routinely evaluated.
 - Automated QC (preliminary)
 - Visual QC
 - Research data product
 - For NOAA vessels and Falkor
- Shore-side data monitoring and feedback to technicians at sea
- Distribution is via web, ftp, and OPeNDAP servers.
- Archival occurs at U.S. NCEI.
 - Monthly transfers to archive

http://samos.coaps.fsu.edu
Lessons Learned (1)

- Shore-side data monitoring works!
 - Disciplinary data centers provide expertise that shipboard technicians may not possess.
- Shipboard technicians benefit from at-sea feedback
- Corrects problems before a whole cruise of useless data is collected

Station 46026 (↑)
passage @ ~300 UTC: station reports 311°
Lessons Learned (2)

- Automated quality control misses problems in data
 - Landmasks do not contain all canals and smaller waterways
 - Airflow distortion, stack exhaust, electronic noise hard to diagnose
- Duplicate sensors can help, but third data source often needed to verify which sensor is correct
- Visual QC frequently 5-10% more data
Lessons Learned (3)

- Never enough metadata!
 - Critical for data reuse
 - Supports visual QC
 - Recommend controlled vocabularies (no free text)
- Never enough focus on metadata collection and preservation
 - Easier to capture as data collected
- Example: Sea temperature
 - Need absolute knowledge of sensor location
 - Distance from water intake affects measurement
 - See Carstens et al. poster

Healy sea temperature difference by latitude

2008-2010: Blue, Green
2011-2012: Red, Orange
Lessons Learned (4)

- SAMOS has advocated for fluid dynamics modeling of ship structures in design phase
 - Implemented for *Sikuliaq* and new U.S. regional class R/Vs
 - Allows instrument mast changes early in process
- SAMOS reviewed results and made recommendations for sensor exposure on new R/Vs

Image courtesy The Glosten Associates

http://samos.coaps.fsu.edu

RCRV - Airflow, 12 kts, Elevation
April 10, 2014
Operator Best Practices

- Site meteorological sensors as far forward and as high as possible to avoid influence of ship on measurements.
- Avoid sources of RF on vessel, which result in noisy data – particularly from radiation sensors.
- Avoid sources of heat.
- Record sensor locations w.r.t. known vessel coordinate system.
 - Document system with data
- Ensure proper calculation of true winds to remove ship motion.

http://samos.coaps.fsu.edu

SAMOS
Shipboard Automated Meteorological and Oceanographic System
Homogeneity

Challenges

- Instrument deployment by vessel operators (Not by NMS)
 - Diverse set of devices
- Uneven metadata collection
- Varying data acquisition procedures
- Varying data quality

How Addressed

- SAMOS provides accuracy targets and sensor recommendations
- Metadata forms, minimum requirements
- Moving towards standard vocabularies (SeaDataNet, CF)
- Providing best practices for data averaging, sampling rates, true wind calculation, etc.
- Structured automated and visual quality control
SAMOS in ICOADS

- An hourly subset of SAMOS 1-min data is included in Release 3.0 of ICOADS.
 - Averaging over 10-min. at top of hour mimics synoptic reports from merchant vessels
 - Takes advantage of SAMOS QC
 - ~750 K hourly reports: 2005-2014
 - Data formatted to ICOADS submission specifications (IMMA1)

SAMOS Data Density: 2005-2014

Hourly observations per bin
Along Track Fluxes

- Version 2 of the SAMOS air-sea flux product released early in 2016
 - One-minute interval latent and sensible heat flux, wind stress, and height adjusted (10m) wind speed, specific humidity, and potential temperature
 - 3 algorithms – Smith88, COARE3.5, Bourassa2012
 - Period: 2005-2014
- Data available from NCAR
 - doi: 10.5065/D6930R70
- Described in Smith et al., Geosci. Data J. (2016), doi: 10.1002/gdj3.34

Ship Observation Distribution

Number of observations

0 1000 2000 3000 4000

10E 60E 110E 160E 150W 100W 50W 0W

-80 -60 -40 -20 0 20 40 60 80

http://samos.coaps.fsu.edu

SAMOS
Shipboard Automated Meteorological and Oceanographic System
Future

• Seeking opportunities to expand contributions to SAMOS
 • Open source codes and procedures
 • Support distributed data center activities (hard to fund U.S. processing of international vessels)

• Moving forward with development of QC procedures for other flow water parameters
 • Partnering with U.S. Rolling Deck to Repository program
 • Reviewing IOOS, GOSUD procedures

• Additional product development (as resources allow)
 • Routine contributions to ICOADS
 • Improved along track air-sea flux products
Questions?

SAMOS is base funded by NOAA's Climate Observation Division (grant # NA11OAR4320199) and the U. S. National Science Foundation’s Oceanographic Instrumentation and Technical Services Program (grant # OCE-1447797). Since 2013, the Schmidt Ocean Institute (SOI) has funded participation by the RV Falkor in the SAMOS initiative.