The SAMOS Initiative – A Decade of Successful Data Stewardship

Shawn R. Smith¹, Jeremy J. Rolph¹, Kristen Briggs¹, Jocelyn Elya¹, and Mark A. Bourassa^{1,2}

¹Center for Ocean-Atmospheric Prediction Studies, Florida State University, USA ²Earth, Ocean, and Atmospheric Science Department, Florida State University, USA

smith@coaps.fsu.edu

SAMOS Overview

- Since 2005, have collected, evaluated, distributed and archived underway meteorology and surface ocean data from research vessels
 - Position, course, speed, heading
 - Air temperature, humidity, winds, pressure, radiation
 - Sea temp., salinity, conductivity
- Active contributors in 2016:
 - NOAA (16), USCG (1), IMOS (2), NSF Antarctic (2), WHOI (2), BIOS(1), SIO (2), UW (1), U. Hawaii (1), SOI (1), U. Alaska (1), LUMCON (1)
 - *Neil Armstrong* and *Investigator* new in 2016

Number of ships contributing and records processed by SAMOS

Year	Ships	1-min Records
2005	2	445846
2006	3	761753
2007	13	2407649
2008	21	4989685
2009	27	4894855
2010	28	6072321
2011	28	6190191
2012	35	6872249
2013	35	6996322
2014	35	6877784
2015	33	7775116
2016	31	3663909*

SAMOS Data Processing

- One-minute samples are bundled in daily email messages.
- Automated processing merges data with extensive vessel metadata (based on VOSClim).
- Data are routinely evaluated.
 - Automated QC (preliminary)
 - Visual QC

SAMOS

- Research data product
- For NOAA vessels and Falkor
- Shore-side data monitoring and feedback to technicians at sea
- Distribution is via web, ftp, and **OPeNDAP** servers.
- Archival occurs at U.S. NCEL
 - Monthly transfers to archive

Lessons Learned (1)

- Shore-side data monitoring works!
 - Disciplinary data centers provide expertise that shipboard technicians may not possess.
- Shipboard technicians benefit from at-sea feedback
- Corrects problems before a whole cruise of useless data is collected

SAMOS http://samos.coaps.fsu.edu Shipboard Automated Meteorological and Oceanographic System

Lessons Learned (2)

- Automated quality control misses problems in data
 - Landmasks do not contain all canals and smaller waterways
 - Airflow distortion, stack exhaust, electronic noise hard to diagnose
- Duplicate sensors can help, but third data source often needed to verify which sensor is correct
- Visual QC frequently 5-10% more data

Lessons Learned (3)

- Never enough metadata!
 - Critical for data reuse
 - Supports visual QC
 - Recommend controlled vocabularies (no free text)
- Never enough focus on metadata collection and preservation
 - Easier to capture as data collected
- Example: Sea temperature
 - Need absolute knowledge of sensor location
 - Distance from water intake affects measurement
 - See Carstens et al. poster

SAMOS http://samos.coaps.fsu.edu Shipboard Automated Meteorological and Oceanographic System

Lessons Learned (4)

- SAMOS has advocated for fluid dynamics modeling of ship structures in design phase
 - Implemented for Sikuliaq and new U.S. regional class R/Vs
 - Allows instrument mast changes early in process
- SAMOS reviewed results and made recommendations for sensor exposure on new R/Vs

Image courtesy The Glosten Associates

Operator Best Practices

- Site meteorological sensors as far forward and as high as possible to avoid influence of ship on measurements
- Avoid sources of RF on vessel, which result in noisy data – particularly from radiation sensors.
- Avoid sources of heat.
- Record sensor locations w.r.t. known vessel coordinate system.
 - Document system with data
- Ensure proper calculation of true winds to remove ship motion.

Homogeneity

Challenges

- Instrument deployment by vessel operators (Not by NMS)
 - Diverse set of devices
- Uneven metadata collection

- Varying data acquisition procedures
- Varying data quality

How Addressed

- SAMOS provides accuracy targets and sensor recommendations
- Metadata forms, minimum requirements
- Moving towards standard vocabularies (SeaDataNet, CF)
- Providing best practices for data averaging, sampling rates, true wind calculation, etc.
- Structured automated and visual quality control

SAMOS in ICOADS

- An hourly subset of SAMOS 1-min data is included in Release 3.0 of ICOADS.
 - Averaging over 10min. at top of hour mimics synoptic reports from merchant vessels
 - Takes advantage of SAMOS QC
 - ~750 K hourly reports: 2005-2014
 - Data formatted to ICOADS submission specifications (IMMA1)

SAMOS Data Density: 2005-2014

Along Track Fluxes

- Version 2 of the SAMOS airsea flux product released early in 2016
 - One-minute interval latent and sensible heat flux, wind stress, and height adjusted (10m) wind speed, specific humidity, and potential temperature
 - 3 algorithms Smith88, COARE3.5, Bourassa2012
 - Period: 2005-2014
- Data available from NCAR
 - doi: 10.5065/D6930R70
 - Described in Smith et al., *Geosci. Data J.* (2016), doi: 10.1002/gdj3.34

Future

- Seeking opportunities to expand contributions to SAMOS
 - Open source codes and procedures
 - Support distributed data center activities (hard to fund U.S. processing of international vessels)
- Moving forward with development of QC procedures for other flow water parameters
 - Partnering with U.S. Rolling Deck to Repository program
 - Reviewing IOOS, GOSUD procedures
- Additional product development (as resources allow)
 - Routine contributions to ICOADS
 - Improved along track air-sea flux products

Questions?

SAMOS is base funded by NOAA's Climate Observation Division (grant # NA110AR4320199) and the U.S. National Science Foundation's Oceanographic Instrumentation and Technical Services Program (grant # OCE-1447797). Since 2013, the Schmidt Ocean Institute (SOI) has funded participation by the RV Falkor in the SAMOS initiative.

http://samos.coaps.fsu.edu SAMOS Shipboard Automated Meteorological and Oceanographic System

