The Antarctic Sea Ice spatial variability for the period 1979-2006 and its relationship with atmospheric circulation

S. Barreira and R. Compagnucci

Argentine Navy Meteorological Service and University of Buenos Aires

Principal Components Analysis (PCA) in T-Mode (correlation between spatial fields) Varimax rotated was performed on Antarctic monthly sea ice concentration anomalies (SICA), in order to investigate which are the main spatial patterns, when do they appear and how are they related to several atmospheric variables. This analysis provides 8 principal components (5 for winter-spring and 3 for summer-autumn periods) in positive and negative phase (16 spatial patterns), that represent the most important spatial features that dominated sea ice concentration anomalies (SICA) spatial variability in Antarctic Seas for the period 1979-2006. Monthly Polar Gridded Sea Ice Concentrations database derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. The connection between sea ice condition is analyzed by mean of 850 hPa height, surface air temperature and precipitation composites anomalies coupled with each SICA pattern. These data were provided by the National Center for Environmental Prediction reanalysis project.

Table: Monthly classification																													
of the sea ice concentration		1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
anomalies for the 1979-2006	January	7-	7-	3+	3+	7-	(7-)	3+	3+	3+	3+	6-	NC	3-6+	3-	(6+)	3-6+	3-	(6-)	6+	6-	7+	6+3+	6-	6+	3-6-	6-3-	7-	(7-8+)
	February	7-	7-	3+	NC	(7-)	(3+7-)	3+	3+	3+	3+	6-	NC (3-)	3-6+	3-	(6+)	6+3-	3-	NC	6+(3-)	6-	7+	6+	6-	6+	3-	6-3-	7-	NC
periods. The numbers indi-	March	7-	7-	3+	3+	7-3+	(7-)	3+	3+	3+	3+	6-	NC	3-(6+)	3-7-	6+(3-)	3-	3-	7+	3-6+	6-7+	7+	6+(7+)	6-	6+	3-	3-6-	(6-7-)	(3+)
cate the order of the PC that	April	(6-8-)	7-	3+(7-)	(2+3+)	7-(3-)	7-	7+3+	3+	3+	3+	(8+)	(7+)	3-	3-7-	6+(3-)	3-	3-	7+(6-)	(3-)	7+	7+3+	6+7+	3-	6+	3-	3-6-	(4+6-)	3+
	May	8-	7-4-	(7-)	2+(1-)	(3-)	NC	7+(5-)	(2+)	3+(8-2+)	4+	(8+)	4+	(7-1+)	7-3-(4-)	(1-)	3-(2-1+)	(3-)	7+	NC	4-	4+7+	4+(7+1-)	(2-)	6+	2-	(6-)	4+(1+)	(1-6+)
classifies a month. The "+"	June	(8-)	4-7-	4-	1-(2+)	(1+)	1+(5-)	5-1-	2+5+	2+	4+2-5-	(1-8+)	4+	1+	4-(1+)	8+	1+(8-2-)	5+(8+)	(4+)	8-	2-5-	4+	4+1-	2-5-	1+5+	2-	(2-4-8-)	1+4+	1-
sign is associated with the	July	8-1-	4-1+	4-1-8-	(8+2+)	4+	5-2-	1-(2+)	2+(5+)	1+2+4-	2-	1-	2+4+1-	1+	4-1+2-	8+(1-)	1+8-	1+5+	8-	1+	5-1-	4+	1-(4+)	1+5-	2+8-	2-	5+	1+	8+5+
negitive phase of a DC. The	August	5+1-	1+4-	8-4-	8+	4+8+	(5-)	1-2+	2+8+1+	4-	2-	1-(5+)	2+4+	1+	2-4-	1-(8+)	(2-8-)	1+	8-	5+	4+5-2-	4+	4+(8-1-)	5-	8-	1-5+	5+	1+5+	2-5+
positive phase of a PC. The	September	5+2+	1+4-	4-	8+	(4+5-)	1-8-	1-4+	2+(8+)	4-	2-	1-	2+8+4+	NC	5+(2-)	1-(8+)	4+5+	1+	8-5-(4+)	1+	5-4+	5-	8-	2+(5-)	2-	5+1-	5+	2-	2-
"-" sign indicates the nega-	October	5+2+	2-1+4-	4-	8+(1+)	(2+)	2+1-	1-4+	2+(4-)	4-	2-8-	1-	2+4+	4-1+	5+2-	8+	1+(5+)	2-	8-4+	2-5-1+	5-1-4+	5-	8-	1-6+	2-	5+	5+	2-	2-
tive phase of the PC NC is	November	5+2+(7-)	2-4-	4-2-	1+8+	1-(4+)	1-8+	1-	2+1+	8-(4-5-)	2-	1-5+	2+1+4+	(4-2-)	5+	8+	1+(3-)	(2-4+)	8-(6+)	4-1+2-	4+(5-)	5-	6-5-	6+4+	5+	5+	5+	2-	8+2-
the phase of the ro. NO IS	December	7-	(1+4-)	3+(6+)	1+	1-(6+)	(1-8+)	1-(3+)	2+(1+)	1-(8-7+)	6-(2-)	NC	2+1+(3-6+)	3-	(6+)	(3-)	3-(1+)	(6-)	6+(4+)	6-4-	4+7+	6+1-	6-	6+	3-6-	5+	(5+)	(2-8+)	(6+)
used to denote the unclassi-																													

PC2 Positive phase

Figures: The 8 obtained Spatial patterns in positive and negative phase and the associated composite of 850 hPa height anomalies, surface temperature anomalies and precipitation anomalies

850 hPa Height Anomalies PC1 Positive Phase Surface Air Temperature Anomalies PC1 Positive Phase Precipitation Anomalies PC1 Positive Phase

ARA

fied months.

 \frown

PC1 Positive phase

The first spatial winter-spring pattern in positive (negative) sea ice concentration anomaly centre over the Drake Passage and north region of Bellingshausen and Northeast Weddell Seas together with another positive centre over the East Indian Ocean basin. Opposite sign centre over the rest of the Atlantic and Indian Oceans basins and the Amundsen Sea are also presented. A strong positive (negative) 850-hPa height anomaly covers most of the Antarctic Continent centred over the Bellingshausen Sea accompanied by three negative (positive) height anomalies in middle-latitudes (Atlantic, Pacific and Indian Oceans), characterize the atmospheric circulation for this first pattern. Temperature anomalies fields show strong negative (positive) anomalies cores over the areas with positive (negative) SICA centres. These temperature anomalies extend their influences over middle-latitudes (up to 30°S). Therefore, the meridional temperature gradient is enhanced (reduced) over the South Atlantic Ocean and Southwest Pacific Ocean over the areas with the negative (positive) anomalies of height, giving positive (negative) precipitation anomalies over the Southern Oceans. Each sea ice pattern is characterized by a unique spatial behaviour and is accompanied by a different atmospheric structure.