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1. Introduction

Routine weather observations made by Voluntary Observing Ships (VOS) have been used in numerous studies ranging from air-sea 
interaction to validation of  model output and satellite data. In order to understand the trends and variability seen in these observations and to 
understand the differences between the VOS observations and data from other sources we need uncertainty estimates for each source 
together with estimates of the systematic biases.

In this poster new estimates of the random uncertainties in individual VOS marine air temperature (MAT) observations are made using the 
semi-variogram method. A number of different variogram models are explored and the effect of height and bias adjustment on the resulting 
uncertainty estimates shown.

2. Data Sources

VOS observations for the period 1970 - 2006 from the Intenational Comprehensive 
Ocean-Atmosphere Data Set ICOADS (Worley et al., 2005)  combined with measurement 
metadata  (Kent et al., 2007) have been used.  The ICOADS 3.5σ trimming limits have 
been applied to remove outliers and mis-positioned reports identified following Kent and 
Challenor (2006).

7. Summary and Conclusions

Following previous authors, random errors have been estimated for  MAT observations 
using the semi-variogram method. However, the variogram model used by previous 
authors has been shown to be unsuitable for MAT observations, with a Gaussian 
variogram model shown to be more suitable. Applying bias adjustments to account for 
the varying observing height and for day time heating, reduces the random uncertainty  
estimates. Each adjustment reduces the random uncertainty estimate by approximately 
8%. Finally, the effects of anisotropy on the variogram and error estimates have been 
shown in an example, suggesting that the error estimates could be further improved by 
taking these effects into account.

References
Berry, D. I., E. C. Kent, and P. K. Taylor, 2004: An analytical model of heating errors in marine air temperatures from ships. Journal of Atmospheric and Oceanic Technology, 21, 1198-1215.
Cressie, N. A. C., 1993: Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics, Wiley and Sons, 900 pp.
Kent, E. C. and D. I. Berry, 2005: Quantifying random measurement errors in Voluntary Observing Ship meteorological observations. International Journal of Climatology, 25, 843 - 852.
Kent, E. C. and P. G. Challenor, 2006: Towards Estimating Climatic Trends in SST. Part II: Random Errors. Journal of Atmospheric and Oceanic Technology, 23, 476 - 486.
Kent, E. C., S. D. Woodruff, and D. I. Berry, 2007: Metadata from WMO Publication No. 47 and an Assessment of Voluntary Observing Ship Observation Heights in ICOADS. Journal of Atmospheric and 

Oceanic Technology, 24, 214 - 234.
Lindau, R., 1995: A new Beaufort Equivalent Scale. International COADS Winds Workshop, Kiel, Germany, Institut fur Meereskunde, Kiel, and NOAA, 232 - 252.
Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS Release 2.1 Data and Products. International Journal of Climatology, 25, 823 - 842.

6. Anisotropy and Future Work

The variogram estimates shown, together with previous studies, assume the spatial 
variability is isotropic and use omnidirectional variogram estimates. However, over some 
highly anisotropic regions such as the Gulf Stream this assumption will be invalid. The 
figure below shows the square root of two directional sample semi-variograms estimated 
over the Gulf Stream region (30N - 45N, 75W-60W) along a North - South axis (red) and 
along an East - West axis (green) together with the square root of the omnidirectional 
semi-variogram (black). As expected in this region, the semi-variogram aligned along the 
East - West axis increases at slower rate than the variogram aligned along the North 
South axis. This is due to the lower spatial 
variability across a zonal region compared 
to the meridional spatial variability.

Residual semi-variograms (°C) plotted against distance (km) for 
the linear (red), Gaussian (green) and exponential (blue) 

variogram models for July 1993

Directional semi-variograms (°C) along a North - South axis (red) and 
East - West axis (green) plotted against separation distance (km) over 
the Gulf Stream (30N - 45N, 75W - 60W) during July 1993. Also shown 

is the omnidirectional semi-variogram (black)
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4. Random Errors in VOS Observations

Previous work used a linear variogram model to extrapolate the variograms to zero 
separation distance in order to estimate the random errors in VOS observations. However, 
there are other variogram models (e.g. Cressie  1993) and these may provide a better fit to 
the sample variograms. The left panel shows an example of the estimated sample 
semi-variograms (black) plotted against separation distance for different 30° grid boxes 
over the North Atlantic and during July 1993. 50 km separation bins have been used 
(∆h=25 km). Also shown are a number of the more commonly used variogram models. 
These are the linear (red), Gaussian (green) and exponential (blue) variogram models.

Semi-variograms (°C) (black) plotted against separation distance (km) 
for July 1993. Also shown are the linear (red), Gaussian (green) and 

exponential (blue) variogram models.

The right panel shows the residuals of the model fitting. This clearly shows that over the 
western tropical and north Atlantic both the linear and exponential models 
underestimate the semi-variogram at low separation distances. As the separation 
increases these models then overestimate the semi-variograms. In contrast, the 
Gaussian model (green) gives a better fit over all separation distances. Over the 
remainder of the North Atlantic there is little to distinguish between the different models. 

The results suggest that not taking the 
isotropy into account will overestimate 
the random errors in some regions. The 
next step to improving the random error 
estimates will be to calculate the sample 
variograms along different axis and find 
the axis along which the value at zero 
separation distance is a minimum. This 
should then give an estimate of the 
random error in the observations with 
the effects of anisotropy removed.

3. The Semi-Variogram Method

The semi-variogram method (e.g. Lindau, 1995; Kent and Berry, 2005) estimates the 
random errors as a function of the squared differences between pairs of observations and 
as a function of separation distance. i.e. the sample variogram is given by

Where             is the variogram between separation distances of h-∆h and h+∆h. Z(s
i
) is the 

value of the variable at location s
i
 and Z(s

j
) the value of the  variable at location s

j
. The sum 

is over all

i.e. over all pairs of observations with separation distances between h-∆h and h+∆h. |N(h)| 
gives the number of distinct elements of N(h).

The differences between pairs of observations are a result of measurement errors in the 
observations and real differences due to spatial and temporal variability. By limiting the 
pairs of observations to the same nominal reporting time and extrapolating to zero 
separation distance the natural variability is minimised and any difference remaining is due 
to random errors. The random error can then estimated as the square root of half the 
squared difference at zero separation, i.e. 

5. Global Error Estimates and Bias Correction

Based on the results shown for the different variogram models, sample variograms have 
been estimated globally on a 30° grid for each month between 1970 and 2006 and the 
variograms extrapolated to zero separation distance using the Gaussian variogram model. 
The plot below shows a time series, with a 12 month running mean filter applied, of the 
estimated random errors using the Gaussian variogram model (black). Also shown are 
estimates of the random errors after the observations have been height corrected (red) and 
height and bias corrected (green). The bias correction corrects for day time heating errors 
in VOS observations (Berry et al., 2004). Over the 37 year period all three random error 

estimates are relatively 
constant from one year to the 
next. Each adjustment made 
to the observations reduces 
the random error estimates, 
with the height adjustment 
reducing the error estimates 
by 0.1 °C and the bias and 
height adjustment reducing 
the error estimates by 0.2 °C.
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Globally average random error estimates for uncorrected (black), height corrected 
(red) and bias and height corrected air temperature observations. A 12 month running 

mean filter has been applied


