Construction and Testing of the Globally Complete HadISST1 data set

Nick Rayner

Hadley Centre for Climate Prediction and Research, Met Office, UK

nick.rayner@metoffice.com

In collaboration with:

Met Office

- David Parker
- Briony Horton
- Chris Folland
- Lisa Alexander
- Dave Rowell
- Jim Arnott
- Povl Frich

Internationally:

- Alexey Kaplan (LDEO)
- Dick Reynolds, Diane
 Stokes, Bob Grumbine
 (NOAA)
- John Walsh, Bill
 Chapman (Univ. Illinois)
- Jim Maslanik, Mark
 Serreze (Univ. Colorado)
- Mike Fiorino, Pedro
 Viterbo (ERA40 team)

Overview

Summary of the construction of HadISST1:

- RSOI and dealing with changing mean
- Blending reconstruction with "variance corrected" observations
- Homogenisation of sea ice fields
- SST from sea ice concentration
- Plans for the future

HadISST1 summary Globally complete fields of SST and sea ice concentration on 1° area resolution HadISST1 is monthly, 1870-1999 Will be updated and produced automatically in near real time towards the end of this year Details to be found in journal paper to be submitted soon

Annual global average colocated SST, 1870-1999

Reconstruction of spatially varying "trend"

- First EOF of low-pass filtered 4° area seasonal *in situ* / satellite SST anomalies for 1901-97 gives pattern of "trend".
- RSOI reconstruction thereof subtracted from monthly fields. EOFs of these detrended data for 1958-97 used in RSOI of detrended data for
 1870 onwards.

Antarctic Circumpolar Wave in HadAM3 MSLP (hPa), 1982-98

Forced with GISST

Forced with HadISST1

Lag 1 month autocorrelation detrended 2° area fields 1982-99

Met Office

Standard deviation (°C) of August SST anomalies 1982-99

GISST3.0

Met Office

Standard deviation (°C) of February SST anomalies 1982-99

OI.v2

Met Office

GISST3.0

Global root mean squared standard deviation in 20-year periods, 1870-1889, 1871-1890, etc.

Effect on global mean of adding HadSST to reconstructions

Monthly difference of global average HadISST1 – RSOI reconstruction (colocated, °C) 1949–1999

Assembly of sea ice fields

- Long data set requires sea ice fields to be taken from a variety of sources
- Sea ice data from different sources are very inhomogeneous
- Data set required to be homogeneous
- Sea ice data used both explicitly and to specify SST in grid boxes where both sea ice and open water occur
- Need to make time series as homogeneous as possible, but this is not necessarily the most accurate sea ice data set available

Northern Hemisphere average sea ice area (10⁶km²), 1957-98

Sea-ice calibration process Arctic Antarctic

 Correct for effect of surface melt on passive microwave data sets (GSFC, NCEP) away from ice edge

 Add microwave variability to inner ice-pack of chartderived data set (Walsh)

 Add climatologies to missing regions

Arctic sea ice concentration

Walsh 1930

GSFC 1990

January

a.

August

HadISST1 1930

0.6

04

0.8

0

Northern Hemisphere average sea ice area (10⁶km²), 1957-98

Southern Hemisphere average sea ice area (10⁶km²), 1957-98

Sea-ice calibration process Arctic Antarctic

- Correct for effect of surface melt on passive microwave data sets (GSFC, NCEP) away from ice edge
- Add microwave variability to inner ice-pack of chartderived data set (Walsh)
- Add climatologies to missing regions

- Calibrate low conc. GSFC using Bristol algorithm data
- Calibrate high conc. NIC using GSFC and NCEP
- Fill atlas climatologies using modern climatological concs.
- Interpolate into data-void periods

Antarctic sea ice concentration Bristol 1990 GSFC 1990 HadISST1 8/1930 28

January

August

0.4

0.6

0.8

0

0.2

Southern Hemisphere average sea ice area (10⁶km²), 1957-98

Northern Hemisphere average sea ice extent (10⁶km²), 1957-98

Southern Hemisphere average sea ice extent (10⁶km²), 1957-98

SST near sea ice

- SST in partially ice-covered grid boxes specified using sea ice concentration
- Monthly- and geographically-varying relationships between SST (*in situ* and biasadjusted AVHRR) and sea ice concentration developed using coincident pairs of data
- Separate relationships for each calendar month were developed using 12 overlapping 3-month seasons

- Hemispheres split into 360 31°-longitude sectors. Peripheral regions separated
- SST = a (ICE)² + b (ICE) + c , constrained such that SST = -1.8°C (in Great Lakes, SST = 0°C) when ICE >= 0.9
- If < 100 data pairs, coefficients linearly interpolated from neighbouring sectors/months
- SST specified using relationship centred on target location/month

No. SST/sea ice pairs in Arctic vs

longitude (blue line = < 100 pairs)

6000

March

N. Hem. SST/sea ice fits for 60°W January April

()) 100 100 $-2^{0.0}$

 $0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0$

July

0.2 0.4 0.6 0.8 1.0 (Sea ice October conc.

Net Office

Arctic SST (°C) climatology, January HadISST1 U.S. Navy GDEM climatology

2 3 4 5 6 7 8 9

SST climatology difference, January, Navy GDEM - HadISST1

Arctic SST (°C) climatology, July HadISST1 U.S. Navy GDEM climatology

SST climatology difference, July, Navy GDEM - HadlSST1

Arctic SST (°C) climatology, July HadISST1 U.S. Navy GDEM climatology

The future

- Rework using the new blend as input
- Multi-step OI procedure using RSOS to give basic broad-scale analysis
- Possible improvement in "trend" reconstruction
- Attempt to reconstruct Southern Ocean before 1982
- Use of AATSR and reprocessed ATSR will help to improve resolution and remove AVHRR-associated problems
- Improved sea ice and SST near sea ice
- Error estimate for each grid box

Summary

- HadISST1 was constructed with data from a variety of sources and using a number of reconstruction techniques
- Due to relative biases between the input data sets, corrections were applied before their use
- HadISST1 is an improvement on GISST, particularly in the period 1949 onwards
- Further improvements will be made over the next 18 months with the aid of new input data and techniques

Climatology differences (°C), adj OI.v2 - HadISST1, 1971-2000 January July

