Creating the HadSST gridded in situ SST analysis

David Parker Hadley Centre, Met. Office, UK

International Workshop on Advances in the Use of Historical Marine Climate Data: Boulder, Colorado, USA, January 2002

Reducing scatter in HadSST

- Create 1° area pentad anomalies; remove bucket bias.
- Do neighbour and extreme checks.
- Convert to residuals from large-scale first guess field. Variance of residuals is V.
- Aggregate to months and 5° areas (2° or 4° for HadISST); count obs. (n).
- Estimate random error E = 0.75(A² + B²)/n
 A ~ sampling error from climatological variances of 1° area pentad anomalies within 2° or 4° or 5° areas; B ~ measurement error (Kent et al. 1999)
- Scale down the residuals by a factor K = {(V-E)/V}^{0.5} to make their variance equivalent to the estimated true subregional-scale variance. K is zero if E exceeds V.
- Add back the large scale first-guess field.

Examples of how scatter is reduced in HadSST

- We have estimated random error E = 0.75(A² + B²)/n and scaled down the residuals by K = {(V-E)/V}^{0.5}. K is zero if E exceeds V.
- Typical value of 0.75 (A²+B²) is 2 (°C)². Typical value of V is 0.2 (°C)². So if e.g. the initial gridded anomaly is 5°C and the first-guess value is 1°C:

	n	E (°C) ²	K	HadSST anomaly (°C
	1	2	0	1+ K(5-1) = 1
	10	0.2	0	1+ K(5-1) = 1
	11	0.18	0.30	1+ K(5-1) = 2.2
	12	0.167	0.41	1+ K(5-1) = 2.6
•	20	0.1	0.71	1+ K(5-1) = 3.8
	200	0.01	0.975	1 + K(5-1) = 4.9

Average SST anomaly (°C, relative to 1961-90) for 30°- 35°N, 125°-135°E, 1870-1880: HadSST (dots) and MOHSST6D (solid). From Jones et al. (2001).

HadSST(solid) and MOHSST6D (dots) SST anomalies relative to 1961-90. From Jones et al. (2001).

Normalised and Winsorised ATSR minus MOHSST6D SST (°C), July 1996.

6

Normalised and Winsorised ATSR minus HadSST SST (°C), July 1996.

Running standard deviations over 120 months of SST anomalies (°C, relative to 1961-90). HadSST (heavy line); MOHSST6D (light line). From Jones et al. (2001).

Met Office

Cumulative frequencies of SST anomalies (°C, relative to 1961-90), Ni_o 3.4 area: HadSST (solid); MOHSST6D (dotted). From Jones et al. (2001).

Hemispheric and global SST with land surface air temperature anomalies (°C, relative to 1961-90) based on variance-corrected data, and differences from original series based on uncorrected data. From Jones et al. (2001).

Fraction of global ocean data area with annual SST >90th percentile (solid) or <10th percentile (dotted). Anomalies adjusted by subtracting the annual global SST anomaly. From Horton et al., 2001.

Conclusions

* Adjustment of sea surface temperatures to compensate for sampling density has removed many outliers in data-sparse areas and made HadSST more reliable than MOHSST.

* HadSST is much better than MOHSST for analysis of extreme sea surface temperatures.

* The construction of HadSST and a related analysis of land surface air temperatures is in P. D. Jones et al., J. Geophys. Res., 106, 3371-3380 (2001).

