

New Objective FSU Winds and Fluxes

Mark A. Bourassa, Shawn R. Smith, and James J. O'Brien

Center for Ocean-Atmospheric Prediction Studies The Florida State University

> http://coaps.fsu.edu/ bourassa@coaps.fsu.edu

With considerable help from Jenn Braxton, Stacey Campbell, Rosario Romero,

Jiraporn Whalley, and David M. Legler

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

The 'New' in 'New FSU'

- Objective (i.e., fast)
- Surface turbulent fluxes (stress, latent heat, and sensible heat) and related fields (SST, air temperature, specific humidity) are also calculated.
 - Fluxes are internally consistent with the related fields
 - Currently using transfer coefficients from Smith (1980)
 - Will use the best from SEAFLUX evaluations
 - Similar approach can be used with satellite data
- Independently weights observations from different types of platforms
 - Platform classifications are currently either VOS or buoy
 - The weights for the platforms are determined objectively

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Observational Coverage

- In-situ observations.
 - Buoys
 - Frequent in time (often hourly)
 - Very limited spatial coverage
 - Volunteer Observing Ships (VOS)
 - Sparse in time
 - Wider spatial coverage than buoys
 - Quality controlled observations date back to 1790s
- SeaWinds scatterometer has excellent coverage.
 - ~92% of the ice free oceans covered each day.
 - The daily number of SeaWinds observations is approximately equal to the annual number of ship and buoy observations that enter the GTS data stream.
 - Scatterometer (ERS-1) observations start in 1990s

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Example VOS Observation Density (Aug. 1997

The Florida State University

and Fluxes 4

Biases and Uncertainty

- Biases
 - Beaufort winds are adjusted with Lindau's correction.
 - Biases in VOS temperatures are removed following work of Liz Kent.
- Uncertainties in observational estimates (of monthly averages) include
 - Observational uncertainty (i.e., error in the observation)
 - Representiveness
 - Due to differences in location and time, and
 - Differences in sampling volume
 - Sampling error
 - How well are fluctuating fields sampled in time?

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Quality Control on In Situ Data

- In situ data, particularly VOS and drifting buoy data suffer from observational errors, incorrect geographical location, and errors in transmission
- Gross errors are removed in a two step process
 - Filtering in comparison to daSilva's monthly means and standard deviations in these means
 - A minimum standard deviation is defined for regions where poor sampling lead to little variability
 - Values >3.5 standard deviations from the mean are rejected
 - Deletion through a visual editor

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Example Rejected VOS Data (Feb. 1999)

Example VOS Observations (Sept. 1999)

Considerations For Gridded Fields

- There are several problems that must be overcome
 - Filling the gaps
 - A good approximation
 - Must have realistic spatial trends
 - **Removing the edge effects** due to overlapping ship tracks (or buoy chains)
 - Poor techniques will introduce too much spurious divergence/curl
 - Ocean models are highly sensitive to divergence/curl
 - Avoid excessive **smoothing**

Example Buoy Observations (Aug. 1999)

The Gridding Process

- The gridding technique is an improvement from our variational method (*Pegion et al. 2000, MWR*) applied to scatterometer winds.
 - Three types of constraints on the solution field (for vectors).
 - Misfits to observations, for each type of observational platform.
 - RMS sum of misfits to each pseudostress component.
 - Misfit to vorticity of background field.
 - A penalty function to smooth with respect to the background field.
 - The data to which these constraints are applied are scaled to be dimensionally consistent.
 - The background fields are based on the observational data.
- The weights for constraints are objectively estimated through cross validation

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Old FSU

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Old FSU

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Ocean Modeling With New and Old FSU Winds

- The new and traditional FSU winds were used by Zuojun Yu at the IPRC to force a Tropical Pacific ocean model.
- Three year test period with a beta-release of the new FSU winds
 - 1997 1999
 - Includes strong El Niño and La Niña
- The new FSU product produced a much more realistic NECC
 - The NECC in the traditional product was too weak

Center for Ocean-Atmospheric Prediction Studies The Florida State University

SeaWinds Daily (22 hour) Coverage

Ascending Node

Descending Node

From Paul Chang (NOAA/NESDIS): http://manati.wwb.noaa.gov/quikscat/

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

In Situ vs. Scatterometer **Vector Wind Speed (October 1999)**

and Fluxes 19

In Situ & SeaWinds (comb.) vs. SeaWinds Wind Speed (Oct. 1999)

Objective Combined

SeaWinds Scatterom.

and Fluxes 21

The Future FSU Flux Products

- The gridding technique can easily be extended to include data from additional platforms.
 - Scatterometer data will be included
 - Formulating plans to include data from additional platforms
 - Uncertainty fields will be included in the product
- Products
 - Objective FSU winds and and surface turbulent fluxes (Tropical Pacific; in-situ data only)
 - Working on 30 years (need for anomaly models)
 - Will examine how far back we can go with COADS data
 - Objective FSU winds including scatterometer observations
 - High spatial/temporal resolution global scatterometer winds

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Conclusions

- The gridding technique produces internally consistent fields of winds, turbulent surface fluxes, and related variables.
- The gridding technique can easily be extended to include data from additional platforms.
- New and improved data sets are available.
 - Contact information:
 - Bourassa@coaps.fsu.edu
 - <u>Smith@coaps.fsu.edu</u>
 - http://coaps.fsu.edu/

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Old FSU

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

Old FSU

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

http://coaps.fsu.edu/

Center for Ocean-Atmospheric Prediction Studies The Florida State University

In Situ vs. Combined (In Situ & SeaWinds) Surface – 10m Specific Humidity

Objective In Situ

Combined