Variability in Satellite SST Data

Edward M. Armstrong Jorge Vazquez Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center 4800 Oak Grove Dr., MS 300-320 Pasadena, CA 91109 USA ed@seanet.jpl.nasa.gov

Topics

Global 1 degree comparisons between AVHRR SST data sets

 "Performance characteristics" of SST data sets using *in situ* observations

Future work: Comparisons among other satellite datasets

Data Sources

AVHRR satellite SST
Modified Pathfinder SST (MPSST)
Operational NOAA SST (ONSST)
Analysis SST
NOAA Optimal Interpolation SST (OISST)
and others (2DVAR, HADISST, GISST)

Comparison methodology

- Globally regrid daily satellite SST data to 1 degree resolution on monthly time scales for 1985-1997.
- Determine the monthly differences between SST data sets on common 1 degree squares.
- For the entire time series, compute standard statistics for differences on monthly scales for mean bias, RMS, correlation etc.
- Daytime and nighttime satellite results compared separately.
- Caveat: Map results depicted here will be based on statistics for the entire data set, i.e., there is no monthly component.

Daytime bias maps

MPSST-OISST

Nighttime bias maps

MPSST-OISST

Monthly averaged bias values (60N-60S)

Day

Daytime RMS maps

0.5

RMS (degC)

0.0

1.0

1.5

MPSST-OISST

Nighttime RMS maps

160°E

RMS (degC)

0.5

160°W

1.0

120°W

1.5

80°W

40°W

0°

80°S

40°E

80°E

120°E

0.0

MPSST-OISST

Monthly averaged RMS values (60N-60S)

Day

Monthly anomaly time series

- Time series of monthly MPSST, ONSST, and OISST minus WOA98 climatological SST.
- Satellite data are nighttime values.

SST time series stats: SST data (85-90, 93-97) - WOD98 *in situ* SST

	Pathfndr SST		NOAA SST		OI SST		# obs	
	Mean	SD	Mean	SD	Mean	SD	(K)	
60N- 60S	-0.16	1.18	0.09	1.27	0.02	1.19	530K	
20N- 60N	-0.08	1.40	0.21	1.52	0.07	1.43	309K	
20N- 20S	-0.28	0.70	-0.08	0.70	-0.02	0.65	167K	
20S- 60S	-0.23	0.91	0.0	1.0	-0.10	0.95	54K	

Summary

- Daytime MPSST-OISST bias values are closer to zero than ONSST bias values while the reverse it true at night. Nighttime MPSST appears to biased 0.2 degC cool.
- MPSST nighttime cool bias is confirmed by comparing to the independent WOA98 climatology.
- RMS difference results indicate a lower value for MPSST than ONSST for daytime results, and about equal at night.
- MPSST 1 degree time series reflects actual *in situ* SST variation (WOD98 SST) very well in the mid-high latitudes. OI SST does a better job in the low latitudes.
- We are investigating comparisons of MPSST to other datasets such as ATSR SST and MODIS SST.

Pathfinder SST – ATSR2 SST –

statistics

Pass	Mean (°C)	Std Dev (°C)
Daytime	0.51	0.42
Nighttime	0.32	0.35
Daytime (1999)	0.25	0.39
Nighttime (1999)	0.08	0.35

MODIS SST – Pathfinder SST – daytime bias

MODIS SST – Pathfinder SST –

nighttime bias

